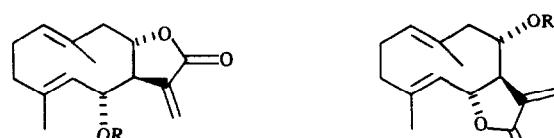


GERMACRANOLIDES FROM *SANTOLINA ROSMARINIFOLIA* SUBSP. *CANESCENS*

ALEJANDRO F. BARRERO, JUAN F. SÁNCHEZ and ENCARNACIÓN ARANA

Department of Organic Chemistry, Faculty of Sciences of the University of Granada, Granada, Spain


(Received in revised form 20 April 1988)

Key Word Index—*Santolina rosmarinifolia*; Compositae; germacranolides; sesquiterpene lactones.

Abstract—Two sesquiterpene hydrocarbons and six germacranolides have been isolated as the major components of the hexane and ethyl acetate extracts from the flowers of *Santolina rosmarinifolia* subsp. *canescens*. The structures of these substances have been established by means of spectroscopic methods.

INTRODUCTION


As part of our research programme into the chemical composition of Compositae of Sierra Nevada (Spain), we have studied the hexane and ethyl acetate extracts from the flowers of *Santolina rosmarinifolia* L. subsp. *canescens* which grows at altitudes of 800–1300 m. No previous studies on the chemical components of this plant have been reported, though the composition of *S. rosmarinifolia* subsp. *rosmarinifolia* is partially known; thus, the acetylenic compounds from its roots [1] and the essential oil from its aerial parts have been investigated [2].

1a R
1b Ac

3 4

5 6

RESULTS AND DISCUSSION

The hexane extract from the flowers of *S. rosmarinifolia* subsp. *canescens* contained the sesquiterpene hydrocarbons germacrene-D [3] and β -cariophyllene as well as five germacranolides. Chamisellin (1a) and chamisanthin (2a) were identified by ^1H NMR [4, 5] and ^{13}C NMR spectroscopy, as well as by acetylation to give the well-known lauranobiolide (1b) and tulipinolide (2b), respectively. Spiciformin (3), 4 α ,5 β -epoxi-6 α -hydroxygermacra-1(10),11(13)-dien-8 α ,12-olide (4) and 1 α ,10 β -epoxi-6 α -hydroxygermacra-4,11(13)-dien-8 α ,12-olide (5) had spectroscopic properties which were very similar to those reported [6, 7]. The ethyl acetate extract, after acetylation, gave the diacetyl derivative of 6 [7].

The presence of germacranolides as the major components in *S. rosmarinifolia* subsp. *canescens* shows that there exists an important chemical difference between this and the other species of *Santolina*, from which neither germacranolides nor other sesquiterpene lactones, with the exception of the guayanolides santonine and santoninol (isolated from *S. achillea* [8]), have been isolated.

EXPERIMENTAL

The plant was collected in June 1985 in Fuente del hervidero (Sierra Nevada, Granada, Spain) and was identified by Professor F. Valle (Departamento de Botánica de la Universidad de

Granada). A voucher specimen is available for inspection at the herbarium, Faculty of Sciences, University of Granada. The flowers were air-dried (500 g) and then extracted with hexane in a Soxhlet. The resulting extract (17.71 g), after defatting with MeOH at -10° (10.12 g), was chromatographed on silica and silica- AgNO_3 columns with hexane-Et₂O, giving: germacrene-D (227 mg), β -cariophyllene (21 mg), 1a (268 mg), 2a (47 mg), 3 (97 mg), 4 (25 mg) and 5 (59 mg). The 225 g of plant material

remaining from the hexane extraction were treated with EtOAc in a similar way and then chromatographed on silica gel. The fraction eluted with hexane-EtOAc (4:1) (940 mg) was acetylated with Ac₂O-pyridine at room temp. followed by purification on a silica gel column with hexane-Et₂O, affording 257 mg of the diacetyl derivative of **6**.

Chamisellin (1a). ¹³C NMR (20.15 MHz, CDCl₃): 126.8 (C-1), 23.0, 24.2 (C-2), 35.9, 38.5 (C-3), 135.8 (C-4), 129.6, 131.9 (C-5), 70.2 (C-6), 50.0, 51.2, 53.9 (C-7), 78.7, 79.8, 83.3 (C-8), 42.3, 47.2 (C-9), 130.4 (C-10), 135.8 (C-11), 170.1 (C-12), 126.8 (C-13), 16.6, 20.7 (C-14), 17.5 (C-15).

Chemissanthin (2a). ¹³C NMR (20.15 MHz, CDCl₃): δ 129.5 (C-1), 25.8 (C-2), 39.0 (C-3), 127.4 (C-5), 77.1 (C-6), 54.7 (C-7), 71.3 (C-8), 52.8 (C-9), 169.3 (C-12), 126.6 (C-13), 17.2 (C-14), 17.7 (C-15).

4β,5α-Epoxy-6α-hydroxygermacra-1(10),11(13)-dien-8α,12-olide (3). ¹³C NMR (20.15 MHz, CDCl₃): δ 127.2 (C-1), 23.4 (C-2), 37.3 (C-3), 61.3 (C-4), 64.7 (C-5), 68.8 (C-6), 46.0 (C-7), 77.1 (C-8), 43.2 (C-9), 129.9 (C-10), 124.6 (C-11), 169.6 (C-12), 127.8 (C-13), 15.9 (C-14), 19.3 (C-15).

Diacetyl derivative of 6. [α]_D -75.1° (CHCl₃; c 1.0); MS (probe) 70 ev, *m/z* (rel. int.): 306 [M - CH₂=C=O]⁺ (1), 289 [M - MeCOO]⁺ (5), 288 [M - AcOH]⁺ (2), 246 [M - AcOH - CH₂=C=O]⁺ (30), 228 [M - AcOH - AcOH]⁺ (80), 213 (50); ¹H NMR (80 MHz, CDCl₃): δ 4.75 - 5.05 (3H, *m*, H-1, H-5, H-6), 2.9 (1H, *m*, H-7), 4.03 (1H, *m*, H-8), 5.74 (1H, *dd*, 1, 2.5, H-13), 6.23

(1H, *dd*, 1, 2.5, H-13'), 1.79 (3H, *br s*, H-14), 5.16 (2H, *m*, H-15), 1.98 (3H, OAc), 2.0 (3H, OAc).

Acknowledgements—We thank Professor F. Valle (Departamento de Botánica de la Facultad de Ciencias de la Universidad de Granada) for the identification of the plant material.

REFERENCES

- Bohlmann, F. and Zdero, C. (1973) *Chem. Ber.* **106**, 845.
- Pascual Teresa, J. de, Gonzalez, M. S., Dios, M. A. de, San Segundo, J. M. and Bellido, I. S. (1981) *Riv. Ital. E.P.P.P.S.* **62**, 355.
- Yoshishara, K., Yoshimoto, O. and col. (1969) *Tetrahedron Letters* 263.
- Shafizadeh, F. and Bhadane, N. R. (1973) *Phytochemistry* **12**, 857.
- Geissman, T. A., Lucas, A. J. and Saitoh, T. (1973) *Biochem. Syst. Ecol.* **1**, 13.
- Bohlmann, F., Jakupovic, J., Ahmed, M. and Schuster, A. (1983) *Phytochemistry* **22**, 1623.
- Bohlmann, F., Adler, A., Jakupovic, J., King, R. M. and Robinson, H. (1982) *Phytochemistry* **21**, 1349.
- Horst, H. A. and Linde, M. S. R. (1967) *Helv. Chim. Acta* **50**, 1961.

Phytochemistry, Vol. 27, No. 12, pp. 3970-3972, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
Pergamon Press plc.

[1 β ,2 β ,3 β -³H₃]GIBBERELLIN A₂₀: CONFIRMATION OF STRUCTURE BY ³H NMR AND BY MASS SPECTROMETRY

CHRISTINE L. WILLIS, PAUL GASKIN and JAKE MACMILLAN

AFRC Research Group, Department of Organic Chemistry, The University of Bristol, Bristol BS8 1TS, U.K.

(Received 19 April 1988)

Key Word Index—Gibberellin A₂₀; tritiation of gibberellin A₅; tritium-labelling; regio-selectivity; ³H NMR.

Abstract—[1 β ,2 β ,3 β -³H₃]Gibberellin A₂₀, 55 Ci/mmol, has been prepared by catalytic reduction of gibberellin A₅ methyl ester 13-acetate 16,17-epoxide, followed by deoxygenation of the epoxide and aqueous alkaline hydrolysis. The regio- and stereo-selectivity of labelling has been established by NMR and mass spectrometry.

INTRODUCTION

Gibberellin A₂₀ (**1**), stereospecifically labelled with tritium at the 2 β - and 3 β -positions, was required for studies with enzymes that catalyse the 2 β - and 3 β -hydroxylation and 2,3-didehydrogenation of gibberellin A₂₀ (GA₂₀) (**1**). Murofushi *et al.* [1] have prepared GA₂₀ (**1**) by catalytic hydrogenation of GA₅ methyl ester (**3**) but found it difficult to separate GA₂₀ methyl ester (**2**) from the complex mixture of reduction products. To avoid this

problem, Murofushi *et al.* [2] protected the 16,17-double bond in GA₅ methyl ester by forming the 16,17-epoxide (**5**), then reduced the 2,3-double bond catalytically with a mixture of tritium and hydrogen gas. Deoxygenation of the reduced epoxide by the method of Cornforth *et al.* [3], followed by hydrolysis of the methyl ester with aqueous sodium hydroxide gave tritiated GA₂₀, presumed to be [2,3-³H₂]GA₂₀, but the stereo- and regio-selectivity of the tritium atoms was not established. To determine the stereo- and regio-selectivity of catalytic reduction of the